(本试剂盒仅供体外研究使用,不用于临床诊断!)

产品货号: E-BC-K284-S

产品规格: 50 assays(36 samples)/100 assays(86 samples)

检测仪器: 紫外-可见光分光光度计(510 nm)

Elabscience[®]植物类黄酮比色法测试盒 Plant Flavonoids Colorimetric Assay Kit

使用前请仔细阅读说明书。如果有任何问题,请通过以下方式联系我们:

电话: 400-999-2100

邮箱: <u>biochemical@elabscience.cn</u>

网址: www.elabscience.cn

具体保质期请见试剂盒外包装标签。请在保质期内使用试剂盒。 联系时请提供产品批号(见试剂盒标签),以便我们更高效地为您服务。

用途

本试剂盒适用于检测植物组织样本中的类黄酮的含量。

检测原理

在碱性亚硝酸盐溶液中,类黄酮与铝离子形成红色络合物,测定样品提取液在510 nm 处的吸光值,即可计算样品类黄酮含量。

提供试剂和物品

编号	名称	规格 1 (Size 1) (50 assays)	规格 2 (Size 2) (100 assays)	保存方式 (Storage)
试剂一	1 mg/mL 标准贮备液	1 mL×1 支	2 mL×1 瓶	2-8°C
(Reagent 1)	(1 mg/mL Standard)	I IIIL^I X	Z IIIL^I /IK	保存6个月
试剂二	盐溶液	2 mL×1 瓶	4 mL×1 瓶	2-8°C
(Reagent 2)	(Saline Solution)	Z IIIL^I TAL	4 IIIL^1 7A	保存6个月
试剂三	铝试剂	2 mL×1 瓶	4 mL×1 瓶	2-8°C
(Reagent 3)	(Aluminium Reagent)	Z IIIL^I TAL	4 IIIL^1 7A	保存6个月
试剂四	碱溶液	25 mL×1 瓶	50 mL×1 瓶	2-8°C
(Reagent 4)	(Alkali Reagent)	23 IIIL^1 7K	30 IIIL^1 /III	保存6个月

说明: 试剂严格按上表中的保存条件保存,不同测试盒中的试剂不能混用。 对于体积较少的试剂,使用前请先离心,以免量取不到足够量的试剂。

所需自备物品

仪器: 紫外-可见光分光光度计(510 nm)

试剂:双蒸水或去离子水、60%乙醇

试剂准备

① 检测前, 试剂盒中的试剂平衡至室温。

② 不同浓度标准品的稀释:

编号	1	2	3	4	⑤	6	7
标准品浓度(µg/mL)	0	20	60	80	100	120	150
1 mg/mL 标准品(μL)	0	24	72	96	120	144	180
双蒸水(μL)	1200	1176	1128	1104	1080	1056	1020

样本准备

① 样本处理

取新鲜植物组织(5-10 g), 用水冲洗表面,滤纸吸干, 放置于真空干燥箱80°C 烘干至恒重(两次称量所得质量之差不超过 0.3 mg), 粉碎, 过 40 目筛, 室温密封保存。

称取 0.02 g 处理后的植物组织粉末,加入 2 mL 60%乙醇,用恒温震荡培养箱 60℃ 震荡 2 小时, 25℃, $10000 \times g$ 离心 10 min,取上清,待测;或者用超声波细胞粉碎机进行提取,超声功率 300 W,破碎 3 s,间歇 4 s,提取 30 min, 25℃, $10000 \times g$ 离心 10 min,取上清液待测。

② 样本的稀释

在正式检测前,需选择2-3个预期差异大的样本稀释成不同浓度进行预实验,根据预实验的结果,结合本试剂盒的线性范围: 0.315-150 μg/mL,可参考下表进行稀释(仅供参考):

样本	稀释倍数	样本	稀释倍数
樟树叶提取上清	8-15	青椒提取上清	不稀释
胡萝卜提取上清	2-5		

注:稀释液为60%乙醇。

实验关键点

每次加完试剂二或试剂三,一定要静置 5 min, 再加入其他试剂。

操作步骤

① 标准管: 取 0.54 mL 6 个不同浓度的标准品,分别加入 6 个 2 mL 6 的 EP 管中;

测定管: 取 0.54 mL 待测样本, 加入 2 mL EP 管中。

- ② 向步骤①中的各管加入 0.03 mL 试剂二, 涡旋混匀, 室温静置 5 min。
- ③ 向步骤②中的各管加入 0.03 mL 试剂三, 涡旋混匀, 室温静置 5 min。
- ④ 向步骤③中的各管加入 0.4 mL 试剂四, 涡旋混匀, 室温静置 15 min。
- ⑤ 510 nm, 0.5 cm 光径石英比色皿, 双蒸水调零, 测定各管吸光度。

操作表

	标准管	测定管	
不同浓度的标准品(mL)	0.54		
待测样本 (mL)		0.54	
试剂二 (mL)	0.03	0.03	
混匀后,室温静置 5 min			
试剂三 (mL)	0.03	0.03	
混匀后,室温静置 5 min			
试剂四 (mL)	0.4	0.4	
混匀,静置 15 min,双蒸水调零,0.5 cm 光径石英比色皿,波长 510 nm,			
测定各管吸光度			

结果计算

标准品拟合曲线: y = ax + b

组织样本中类黄酮含量计算公式:

类黄酮含量 (mg/g 组织) = $(\Delta A_{510}-b) \div a \times V \div W \div 1000 \times f$

注解:

v:标准品在510 nm 波长处的绝对 OD 值(标准品 OD 值-空白 OD 值)

x: 标准品的浓度

a: 标曲的斜率

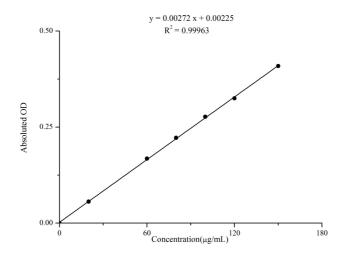
b: 标曲的截距

ΔA₅₁₀: 样本 OD 值-空白 OD 值

V: 加入提取液的体积, 2 mL

W: 样本质量, 0.02 g

1000: 单位换算 (μg→mg)


f: 样本加入检测体系之前的稀释倍数

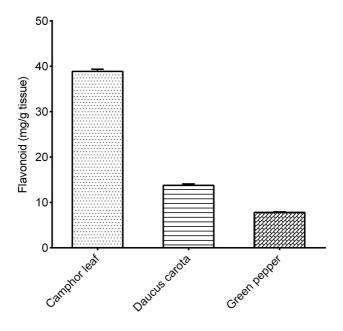
附录1 关键数据

1. 技术参数

检测范围	0.315-150 μg/mL	平均批间差	2.2 %
灵敏度	0.315 μg/mL	平均批内差	1.9 %
平均回收率	98 %		

2. 标准曲线(数据仅供参考)

附录2 实例分析


例如检测胡萝卜组织(数据仅供参考):

取胡萝卜上清用60%乙醇稀释2倍,取0.54 mL稀释液,按说明书操作,结果如下:

标准曲线 $y = 0.0029 x + 0.0008 (R^2=0.9993)$, 测定管平均OD值为0.203, 空白管平均OD值为0.0025, 带入公式计算结果为:

类黄酮含量 = $(0.203 - 0.0025 - 0.0008) \div 0.0029 \times 2 \div 0.02 \div 1000 \times 2 = 13.77$ mg/g 组织 (mg/g 组织)

按照说明书操作,测定樟树叶(稀释10倍,加样量为0.54 mL)、胡萝卜(稀释2倍,加样量为0.54 mL)和青椒(加样量为0.54 mL)中类黄酮含量(如下图):

附录3 问题答疑

问题	可能原因	建议解决方案
复孔差异大	未严格按照说明书操作	严格按照说明书操作
样本和标准品显 色很低	每次加完试剂二或试剂三未静置5min	严格按照说明书操作, 重 新检测
样本测不出值	样本稀释倍数太大	选择合适稀释倍数,重新检测
	样本保存时间过长或者保存不 当	取新鲜样本, 重新检测

声明

- 1. 试剂盒仅供研究使用,如将其用于临床诊断或任何其他用途,我公司将 不对因此产生的问题负责,亦不承担任何法律责任。
- 2. 实验前请仔细阅读说明书并调整好仪器,严格按照说明书进行实验。
- 3. 实验中请穿着实验服并戴乳胶手套做好防护工作。
- 4. 试剂盒检测范围不等同于样本中待测物的浓度范围。如果样品中待测物 浓度过高或过低,请对样本做适当的稀释或浓缩。
- 5. 若所检样本不在说明书所列样本类型之中,建议先做预实验验证其检测 有效性。
- 6. 最终的实验结果与试剂的有效性、实验者的相关操作以及实验环境等因素密切相关。本公司只对试剂盒本身负责,不对因使用试剂盒所造成的样本消耗负责,使用前请充分考虑样本可能的使用量,预留充足的样本。

附录4 客户发表文献

- Lee H Y, Back K. Melatonin Induction and Its Role in High Light Stress Tolerance in Arabidopsis thaliana[J]. Journal of Pineal Research, 2018. IF:15.221
- Ho Byoung Chae, Min Gab Kim, Chang Ho Kang, et al. Redox sensor QSOX1 regulates plant immunity by targeting GSNOR to modulate ROS generation[J]. Molecular Plant, 2021 Aug; 14:1312. IF:13.164
- 3. Adhikari B, Adhikari M, Ghimire B, et al. Cold plasma seed priming modulates growth, redox homeostasis and stress response by inducing reactive species in tomato (Solanum lycopersicum)[J]. Free Radical Biology and Medicine, 2020, 156: 57-69. IF:7.376
- Naseh A, Shirin B, Maryam M,et al. Attenuation of chronic arsenic neurotoxicity via melatonin in male offspring of maternal rats exposed to arsenic during conception: Involvement of oxidative DNA damage and inflammatory signaling cascades[J]. Life Sciences 266 (2021) 118876. IF:5.037
- 5. Liu S Y, Yi S C, Qiu Z X, et al. Bruceine D, the main active ingredient of Brucea javanica (L.) residue inhibits the germination of Bidens pilosa L. seeds by suppressing phenylpropanoid biosynthesis[J]. Industrial Crops and Products, 2021. IF:4.633
- 6. Darband S G, Sadighparvar S, Yousefi B, et al. Quercetin attenuated oxidative DNA damage through NRF2 signaling pathway in rats with DMH induced colon carcinogenesis[J]. Life sciences, 2020(253-). IF:3.708
- Otie V, Udo I, Shao Y, et al. Salinity Effects on Morpho-Physiological and Yield Traits of Soybean (Glycine max L.) as Mediated by Foliar Spray with Brassinolide. Plants (Basel). 2021; 10 (3). IF:2.2