

A Reliable Research Partner in Life Science and Medicine

Recombinant Human FGF-18 protein (His Tag)

Catalog Number: PDMH100048

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description

Species Human

Source HEK293 Cells-derived Human FGF-18 protein Met1-Ala207, with an C-terminal His

Calculated MW 22.7 kDa
Observed MW 32 kDa
Accession 076093

Bio-activity Not validated for activity

Properties

Purity > 95% as determined by reducing SDS-PAGE.

Endotoxin < 1.0 EU/mg of the protein as determined by the LAL method

Storage Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80

°C. Reconstituted protein solution can be stored at 4-8°C for 2-7 days. Aliquots of

reconstituted samples are stable at < -20°C for 3 months.

ShippingThis product is provided as lyophilized powder which is shipped with ice packs.FormulationLyophilized from a 0.2 μm filtered solution in PBS with 5% Trehalose and 5%

Mannitol.

Reconstitution It is recommended that sterile water be added to the vial to prepare a stock solution of

0.5 mg/mL. Concentration is measured by UV-Vis.

Background

Fibroblast growth factor 18 (FGF18) is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth, and invasion. It has been shown in vitro that FGF18 is able to induce neurite outgrowth in PC12 cells. Studies of the similar proteins in mouse and chick suggested that this protein is a pleiotropic growth factor that stimulates proliferation in a number of tissues, most notably the liver and small intestine. Experiment datas identified FGF18 as a selective ligand for FGFR3 in limb bud mesenchymal cells, which suppressed proliferation and promoted their differentiation and production of cartilage matrix. FGF18 appears to regulate cell proliferation and differentiation positively in osteogenesis and negatively in chondrogenesis.