

A Reliable Research Partner in Life Science and Medicine

Recombinant Histone H3 (Asymmetric Di Methyl Arg17) Monoclonal Antibody

catalog number: AN302106L

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description

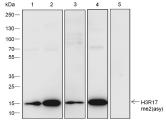
Reactivity Human;Rat;Mouse

Immunogen Recombinant human Asymmetric Di-Methyl-Histone H3 (Arg17) fragment

 Host
 Rabbit

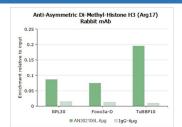
 Isotype
 IgG, κ

 Clone
 A830


Purification Protein A purified

Buffer PBS, 50% glycerol, 0.05% Proclin 300, 0.05% protein protectant.

Applications Recommended Dilution


WB 1:1000-1:2000
ChIP 6 μg/5×10⁶ cells

Data

Western Blot with Histone H3 (Asymmetric Di Methyl Arg17) Monoclonal Antibody at dilution of 1:2000. Lane 1: HeLa, Lane 2: MCF-7, Lane 3: C2C12 nuclear, Lane 4: BRL, Lane

5: Recombinant histone H3
Observed-MW:15 kDa
Calculated-MW:15 kDa

Chromatin immunoprecipitation analysis of HeLa immunoprecipitated DNA by real-time PCR using primers specific for the human RPL30, FOXO3a-D and TuBBP10. The data are presented as enrichment of each sample relative to the total amount of input chromatin at each amplicon.

Preparation & Storage

Storage Storage Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles.

Shipping lce bag

Background

Histone post-translational modifications (PTMs) are key mechanisms of epigenetics that modulate chromatin structures, termed as "histone code". The PTMs on histone including acetylation, methylation, phosphorylation and novel acylations directly affect the accessibility of chromatin to transcription factors and other epigenetic regulators, altering genome stability, gene transcription, etc. Histone methylation occurs primarily at lysine and arginine residues on the amino terminal of core histones. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids (Lys or Arg) in the histones are methylated and how many methyl groups are attached (mono-, di-, trimethylation on Lys, mono-di-symmetric/asymmetric methylation on Arg). Mostly, lysine methylation occurs primarily on histone H3 Lys4, 9, 27, 36, 79 and H4 Lys20, while Arginine methylation occurs primarily on histone H3 Arg2, 8, 17, 26 and H4 Arg3. histone methyltransferases (HMTs) and histone demethylases (HDMs) are major regulating factors.

For Research Use Only