Elabscience Bionovation Inc.

A Reliable Research Partner in Life Science and Medicine

BCA Protein Colorimetric Assay Kit

Catalog No: E-BC-K318-M Method: Colorimetric method

Instrument: Microplate reader(540-590 nm) **Specification:** 96T/500Assays

Note:

① The samples should not contain EGTA, EDTA and other chelating agents, and should not contain DTT, mercaptoethanol and other reducing substances.

② Protein concentration: When the sample background value is high, the bradford protein colorimetric assay kit is recommended (E-BC-K168-S); When the protein concentration is high, the biuret protein colorimetric assay kit is recommended (E-BC-K165-S).

General information

Intended use This kit can be used to measure total protein (TP) content in serum, plasma, culture cells,

tissue and cells samples.

Detection range Detection range: 0.0165-1 mg/mL

and sensitivity Sensitivity: 0.0165 mg/mL

Detection principle Cu²⁺ can be reduced to Cu⁺ by protein in alkaline condition. Cu⁺ can combine with BCA reagent

and form purple complex, which has a maximum absorption peak at 562 nm. The absorbance value is proportional to the protein concentration. Therefore, the protein concentration can be

calculated according to the OD value.

Kit components & storage

Item	Component	Size 1 Size 2 (500 Assay		Storage	
Reagent 1	BCA Reagent	$25 \text{ mL} \times 1 \text{ vial}$	$50 \text{ mL} \times 2 \text{ vials}$	RT, 12 months	
Reagent 2	Copper Salt Solution	$0.5 \text{ mL} \times 1 \text{ vial}$	3 mL ×1 vial	RT, 12 months	
Reagent 3	Standard	1 mg ×1 vial	1 mg ×5 vials	RT, 12 months	
Reagent 4	Standard Diluent	15 mL ×1 vial	30 mL ×1 vial	RT, 12 months	
	Microplate	96 wells			
	Plate Sealer	2 pieces			

Note: The reagents must be stored strictly according to the preservation conditions in the above table.

The reagents in different kits cannot be mixed with each other.

A Reliable Research Partner in Life Science and Medicine

Materials prepared by users

Instruments:

Microplate reader (540-590 nm), Vortex mixer, Micropipettor, Incubator

Reagents:

Double distilled water, Normal saline (0.9% NaCl), PBS (0.01 M, pH 7.4)

Reagent preparation

① The preparation of 1 mg/mL standard solution:

Dissolve a vial of standard with 1 mL standard diluent and mix fully. Aliquoted storage at -20 °C for 3 months.

② The preparation of BCA working solution:

For each well, prepare 200 μ L of BCA working solution (mix well 4 μ L of copper salt solution and 196 μ L of BCA reagent). Store at 2-8 $^{\circ}$ C for 24 h.

③ The preparation of standard curve:

Always prepare a fresh set of standards. Discard working standard dilutions after use.

Dilute 1 mg/mL standard solution with standard diluent to a serial concentration. The recommended dilution gradient is as follows: 0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 mg/mL. Reference is as follows.

Item	1)	2	3	4	(5)	6	7	8
Concentration (mg/mL)		0.1	0.2	0.3	0.4	0.6	0.8	1.0
1 mg/mL standard solution (μL)		20	40	60	80	120	160	200
Standard Diluent (µL)		180	160	140	120	80	40	0

Operation steps

Sample well: add 20 μ L of tested samples.

- 2 Add 200 µL of BCA working solution into each tube.
- ③ Oscillate for 20 s to mix fully and incubate at 37 $^{\circ}$ C for 30 min.
- 4 Measure the OD values of each well at 562 nm with microplate reader.

Note: When the reagent is added to the wells, it should be added to the bottom of the enzyme well; Add the sample slowly to avoid bubbles (Bubble influence test results).

Elabscience Bionovation Inc.

A Reliable Research Partner in Life Science and Medicine

Calculation

The standard curve:

- 1. Average the duplicate reading for each standard.
- 2. Subtract the mean OD value of the blank (Standard #①) from all standard readings. This is the absoluted OD value.
- 3. Plot the standard curve by using absoluted OD value of standard and correspondent concentration as y-axis and x-axis respectively. Create the standard curve ($\mathbf{y} = \mathbf{ax} + \mathbf{b}$) with graph software (or EXCEL).

The sample:

Protein content (mg/mL) = $(\Delta A_{562} - b) \div a \times f$

Note:

 $\Delta A_{562}\!\!:$ Absolute OD (ODsample - ODBlank).

f: Dilution factor of sample before test.