Elabscience®

Mouse PAI1 Antibody Pair Set

Catalog No.E-KAB-0604ApplicationsELISASynonymsSERPINE1;PAI1;PLANH1;Endothelial Plasminogen Activator Inhibitor

Kit components & Storage

Title	Specifications	Storage
Mouse PAI1 Capture Antibody	1 vial, 100 µ g	Store at -20° C for one year.
		Avoid freeze/thaw cycles.
Mouse PAI1 Detection Antibody (Biotin)	1 vial, 50 μL	Store at -20°C for one year.
		Avoid freeze/thaw cycles.

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Product Information

Items		Characteristic (E-KAB-0604)	
		Mouse PAI1 Capture Antibody	Mouse PAI1 Detection Antibody (Biotin)
Immunogen	Immunogen	Recombinant Mouse PAI1 protien	Recombinant Mouse PAI1 protien
Information	Swissprot	P22777	
Product details	Reactivity	Mouse	Mouse
	Host	Goat	Goat
	Conjugation	Unconjugated	Biotin
	Concentration	0.5 mg/mL	/
	Buffer	PBS with 0.04% Proclin 300; 50%	PBS with 0.04% Proclin 300; 1%
		glycerol; pH 7.5	protective protein; 50% glycerol; pH
			7.5
	Purify	Antigen Affinity	Antigen Affinity
	Specificity	Detects Mouse PAI1 in ELISAs.	

For Research Use Only

Elabscience®

Applications

Mouse PAI1 Sandwich ELISA Assay:

	Recommended	Reagent	Images
	Concentration/Dilution		
ELISA	0.5-4 μg/mL	Mouse PAI1 Capture	
Capture		Antibody	10
			Ait and a set of the s
ELISA	1:1000-1:10000	Mouse PAI1 Detection	Optical Density
Detection		Antibody (Biotin)	• 0.1
			0.01 1 10 100
			Mouse PAI1 Concentration (ng/mL)

Note: This standard curve is only for demonstration purposes. A standard curve should be generated for each assay!

Background

Serine protease inhibitor. Inhibits TMPRSS7. Is a primary inhibitor of tissue-type plasminogen activator (PLAT) and urokinase-type plasminogen activator (PLAU). As PLAT inhibitor, it is required for fibrinolysis down-regulation and is responsible for the controlled degradation of blood clots. As PLAU inhibitor, it is involved in the regulation of cell adhesion and spreading. Acts as a regulator of cell migration, independently of its role as protease inhibitor. It is required for stimulation of keratinocyte migration during cutaneous injury repair. It is involved in cellular and replicative senescence. Plays a role in alveolar type 2 cells senescence in the lung. Is involved in the regulation of cementogenic differentiation of periodontal ligament stem cells, and regulates odontoblast differentiation and dentin formation during odontogenesis.