Elabscience®

Purified Anti-Mouse CD335 Antibody[29A1.4]

catalog number: E-AB-F1182A

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description	
Reactivity	Mouse
Immunogen	Recombinant Mouse CD335 protein
Host	Rat
Isotype	Rat IgG2a, ĸ
Clone	29A1.4
Purification	>98%, Protein A/G purified
Conjugation	Unconjugated
Buffer	Phosphate-buffered solution, pH 7.2, containing 0.05% non-protein stabilizer. Dialyze
	to completely remove the stabilizer prior to labeling.
Applications	Recommended Dilution
FCM	$2 \ \mu g/mL(1 \times 10^5 - 5 \times 10^5 \text{ cells})$

Data

	20	Rat IgG2a Alexa Flu 10.3 10.4	Mexa Fluc 10.4	105 105	10.6
10				-	1
2	3	and the second se			
103	J	No.	14		
104 NK1.1 PE-H	and a start of the		si.		
105					
106					
	20	CD335A	no Fluor	10 ⁵	10.6
102			L		Г
103	V		and the	2000	1.
104 NKI.1 PE	120			1	
105 H					
106					٦

C57/BL6 Mouse splenocytes were stained with 0.2 μg Purified Anti-Mouse CD335 Antibody[29A1.4] (Right) and 0.2 μg Rat IgG2a, κ Isotype Control (Left), followed by Alexa Fluor® 647-conjugated Goat Anti-Rat IgG Secondary Antibody, then anti-Mouse NK1.1 PE-conjugated Monoclonal Antibody.

Preparation & Storage	
Storage	Store at 4°C valid for 12 months or -20°C valid for long term storage, avoid freeze /
	thaw cycles.
Shipping	Ice bag
Background	

CD335, also known as NKp46, is a single-pass type I membrane protein of 46 kD. It belongs to the natural cytotoxicity receptor (NCR) family and contains two Ig-like (immunoglobulin-like) domains. It's expression is restricted to NK cells and a subset of NKT cells; it's not expressed in CD1d-restricted NKT cells. CD335 is a receptor for viral hemagglutinins and heparan sulfate proteoglycans and is involved in NK cell activation.