Elabscience Biotechnology Co., Ltd.

A Reliable Research Partner in Life Science and Medicine

Canine VEGF Antibody Pair Set

Catalog No. E-KAB-0399 Applications ELISA

Synonyms VEGF-A;VEGFA;MVCD1;VPF

Kit components & Storage

Title	Specifications	Storage
Canine VEGF Capture Antibody	1 vial, 100 μ g	Store at -20°C for one year.
		Avoid freeze/thaw cycles.
Canine VEGF Detection Antibody	1 vial, 50 μL	Store at -20°C for one year.
(Biotin)		Avoid freeze/thaw cycles.

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Product Information

Items		Characteristic (E-KAB-0399)		
		Canine VEGF Capture Antibody	Canine VEGF Detection Antibody	
			(Biotin)	
Immunogen	Immunogen	Recombinant Canine VEGF protien	Recombinant Canine VEGF protien	
Information	Swissprot	AAD29682		
Product details	Reactivity	Canine	Canine	
	Host	Goat	Mouse	
	Conjugation	Unconjugated	Biotin	
	Concentration	0.5 mg/mL	/	
	Buffer	PBS with 0.04% Proclin 300; 50%	PBS with 0.04% Proclin 300; 1%	
		glycerol; pH 7.5	protective protein; 50% glycerol; pH	
			7.5	
	Purify	Antigen Affinity	Protein A or G	
	Specificity	Detects Canine VEGF in ELISAs.		

For Research Use Only

Tel: 400-999-2100 Web: www.elabscience.cn Email: techsupport@elabscience.cn

Elabscience Biotechnology Co., Ltd.

A Reliable Research Partner in Life Science and Medicine

Applications

Canine VEGF Sandwich ELISA Assay:

	Recommended	Reagent	Images
	Concentration/Dilution		
ELISA	0.5-4 μg/mL	Canine VEGF Capture	
Capture		Antibody	10
			All substitutions of the substitution of the s
ELISA	1:1000-1:10000	Canine VEGF Detection	Optical Density
Detection		Antibody (Biotin)	0 0.1
			0.01 100 1000 10000 Canine VEGF Concentration (pg/mL)

Note: This standard curve is only for demonstration purposes. A standard curve should be generated for each assay!

Background

This gene is a member of the PDGF/VEGF growth factor family. It encodes a heparin-binding protein , which exists as a disulfide-linked homodimer. This growth factor induces proliferation and migration of vascular endothelial cells , and is essential for both physiological and pathological angiogenesis. Disruption of this gene in mice resulted in abnormal embryonic blood vessel formation. This gene is upregulated in many known tumors and its expression is correlated with tumor stage and progression. Elevated levels of this protein are found in patients with POEMS syndrome , also known as Crow-Fukase syndrome. Allelic variants of this gene have been associated with microvascular complications of diabetes 1 (MVCD1) and atherosclerosis. Alternatively spliced transcript variants encoding different isoforms have been described. There is also evidence for alternative translation initiation from upstream non-AUG (CUG) codons resulting in additional isoforms. A recent study showed that a C-terminally extended isoform is produced by use of an alternative inframe translation termination codon via a stop codon readthrough mechanism , and that this isoform is antiangiogenic. Expression of some isoforms derived from the AUG start codon is regulated by a small upstream open reading frame , which is located within an internal ribosome entry site.

Tel: 400-999-2100 Web: www.elabscience.cn Email: techsupport@elabscience.cn