

A Reliable Research Partner in Life Science and Medicine

Recombinant CALML5 Monoclonal Antibody

catalog number: AN300242P

Note: Centrifuge before opening to ensure complete recovery of vial contents.

т.					٠.		
187	e s	CI	РΠ	n	t٦	\mathbf{n}	n
-	4	v.			ш		

Reactivity Human

Immunogen Recombinant Human CALML5 protein

HostRabbitIsotypeIgGClone5F5PurificationProtein A

Buffer 0.2 µm filtered solution in PBS

Applications	Recommended Dilution			
ICC/IF	1:20-1:100			
FCM	1:25-1:100			

Preparation & Storage

Storage This antibody can be stored at 2°C-8°C for one month without detectable loss of

activity. Antibody products are stable for twelve months from date of receipt when stored at -20°C to -80°C. Preservative-Free. Avoid repeated freeze-thaw cycles.

Shipping Ice bag

Background

Calmodulin-like protein 5, also known as Calmodulin-like skin protein, CALML5 and CLSP, is a protein which contains fourEF-hand domains. CALML5/CLSP is particularly abundant in the epidermis where its expression is directly related to keratinocyte differentiation. The expression is very low in lung. CALML5/CLSP binds calcium. It may be involved in terminal differentiation of keratinocytes. Coxsackievirus and adenovirus receptor (CAR) is a member of the immunoglobulin (Ig) superfamily and a component of epithelial tight junction. CAR functions as a primary receptor for coxsackievirus B and adenovirus (Ad) infection. CALML5/CLSP is closely related to CAR. The structure and dynamics of human calmodulin-like skin protein CALML5/CLSP have been characterized by NMR spectroscopy. The mobility of CALML5/CLSP has been found to be different for the N-terminal and C-terminal domains. The N-terminal domain is characterized by four stable helices, which experience large fluctuations. This is shown to be due to mutations in the hydrophobic core. The overall N-terminal domain behavior is similar both in the full-length protein and in the isolated domain.