(本试剂盒仅供体外研究使用,不用于临床诊断!)

产品货号: E-BC-K351-M

产品规格: 48T(32 samples)/96T(80 samples)

检测仪器: 酶标仪(535-555 nm)

Elabscience[®]柠檬酸(CA)比色法测试盒 Citric Acid (CA) Colorimetric Assay Kit

使用前请仔细阅读说明书。如果有任何问题,请通过以下方式联系我们:

电话: 400-999-2100

邮箱: biochemical@elabscience.cn

网址: www.elabscience.cn

具体保质期请见试剂盒外包装标签。请在保质期内使用试剂盒。 联系时请提供产品批号(见试剂盒标签),以便我们更高效地为您服务。

用途

本试剂盒适用于检测动物组织样本、血清(浆)及线粒体中的柠檬酸含量。

检测原理

在酸性条件下, 六价铬 Cr(VI)还原成 Cr³⁺, 后者与柠檬酸发生络合反应, 产物在 545 nm 处有特征吸收峰, 通过测定 545 nm 吸光值的增加, 即可计算出样品中柠檬酸的含量。

柠檬酸提取液不能用于蛋白含量测定,但线粒体的上清液可以直接测定蛋白浓度,推荐使用本公司的BCA 试剂盒进行测定(货号: E-BC-K318-M)。

提供试剂和物品

编号	名称	規格 1 (Size 1)(48 T)	规格 2 (Size 2)(96 T)	保存方式 (Storage)
试剂一 (Reagent 1)	提取液 (Extracting Solution)	60 mL×1 瓶	60 mL×2 瓶	2-8℃ 保存6个月
试剂二 (Reagent 2)	裂解液 (Lysis Buffer)	10 mL×1 瓶	20 mL×1 瓶	2-8℃ 保存6个月
试剂三 (Reagent 3)	还原试剂 (Reducing Agent)	粉剂×1瓶	粉剂×1瓶	2-8°C避光 保存6个月
试剂四 (Reagent 4)	显色剂 (Chromogenic Agent)	1.5 mL×1 支	1.5 mL×2 支	2-8°C避光 保存6个月
试剂五 (Reagent 5)	2 mmol/L 柠檬酸标准品 (2 mmol/L CA Standard)	2 mL×1 瓶	2 mL×1 瓶	2-8℃ 保存6个月
	96 孔酶标板	48 孔×1 块	96 孔×1 块	无要求
	96 孔覆膜	2 张		
	样本位置标记表	1 张		

说明: 试剂严格按上表中的保存条件保存,不同测试盒中的试剂不能混用。 对于体积较少的试剂,使用前请先离心,以免量取不到足够量的试剂。

所需自备物品

仪器: 酶标仪(535-555 nm, 最佳检测波长 545 nm)

试剂准备

- ① 检测前, 试剂平衡至室温。
- ② 试剂一如有析出,使用前80℃加热,直到透明液体,冷却后方可使用。
- ③ 试剂三工作液的配制:

向试剂三中加入5 mL试剂一,充分混匀溶解即可,2-8℃避光可保存7天。

④ 不同浓度标准品的稀释:

编号	1	2	3	4	(5)	6	7	8
标准品浓度(mmol/L)	0	0.2	0.5	0.8	1.0	1.2	1.5	2.0
2.0 mmol/L 标准品(μL)	0	20	50	80	100	120	150	200
双蒸水(μL)	200	180	150	120	100	80	50	0

样本准备

1 样本处理

血清血浆样本:直接检测;

组织中柠檬酸的提取:取 0.1 g 新鲜组织样本,加 0.9 mL 试剂一,冰上充分研磨,11000×g,4℃离心10 min,取上清液待测;

线粒体中柠檬酸的提取:取 0.1 g 新鲜组织样本,加 0.9 mL 试剂一,冰上充分研磨, $600 \times$ g, 4° C离心 5 min,取上清液至另一 EP 管中,再 $10000 \times$ g, 4° C离心 10 min,弃上清(此上清液可用于细胞质 CA 的测定),向沉淀中加入 200 μ L 试剂二,涡旋混匀仪使其充分悬浮, $10000 \times$ g, 4° C离心 10 min,取上清液待测。

② 样本的稀释

在正式检测前,需选择2-3个预期差异大的样本稀释成不同浓度进行预实验,根据预实验的结果,结合本试剂盒的线性范围: 0.06-2.0 mmol/L,请参考下表稀释(仅供参考):

样本	稀释倍数	样本	稀释倍数
人血清	3-15	10%大鼠脑组织	5-10
狗血清	3-10	10%大鼠肝组织	5-20
大鼠血清	3-15	10%小鼠肾组织	5-10
马血清	3-10	10%大鼠肺组织	15-30
小鼠血浆	3-10	10%小鼠心组织	5-20

注: 样本稀释液为试剂一。

实验关键点

试剂一取用时应倒出部分, 再取用, 避免试剂污染。

操作步骤

- ① 测定管: 取 30 μL 待测样本加入到 1.5 mL EP 管中; 标准管: 取 30 μL 不同浓度标准品加入到 1.5 mL EP 管中;
- ② 向上述步骤①中的测定管、标准管加入 210 μL 的试剂一;
- ③ 向上述步骤②中的测定管、标准管加入 30 μL 的试剂三工作液;
- ④ 向上述步骤③中的测定管、标准管加入 30 μL 的试剂四;
- ⑤ 混匀, 室温静置 30 min, 取 200 μL 上清于酶标板中, 酶标仪 545 nm 处测定各孔 OD 值。

操作表

	标准管	测定管
样本(μL)		30
不同浓度标准品(μL)	30	
试剂一(μL)	210	210
试剂三工作液(μL)	30	30
试剂四(μL)	30	30
湿匀 宏涅	I 上 法 干	<u> </u>

混匀, 室温静置 30 min, 取 200 μ L 上清于酶标板中, 酶标仪 545 nm 处测定各孔 OD 值。

本试剂盒检测线粒体样本时, 需测定总蛋白浓度, 推荐使用本公司 BCA 试剂盒(货号 E-BC-K318-M)进行测定。

结果计算

标准品拟合曲线: y = ax + b

按血清(浆)样本的体积计算:

按组织鲜重计算:

柠檬酸含量
$$(\triangle A - b) \div a \times f \div \frac{m}{V}$$

按线粒体蛋白含量计算:

柠檬酸含量
$$= (\triangle A - b) \div a \div C_{pr} \times f$$
 (mmol/gprot)

注解:

y:标准品 OD 值-空白 OD 值(标准品浓度为 0 的 OD 值)

x: 吸光度对应的浓度

a: 标准曲线斜率

b: 标准曲线截距

ΔA: 样本测定 OD 值-空白 OD 值

f: 加入检测体系前样本的稀释倍数

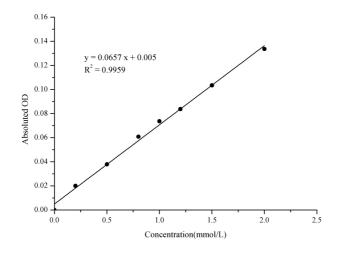
m: 称取组织样品质量(0.1 g)

V: 提取液体积(0.9 mL)

Cpr: 上清液的蛋白浓度(gprot/L)

附录1 关键数据

1. 技术参数

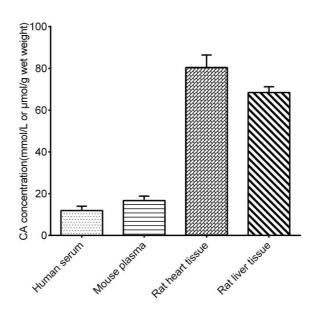

检测范围	0.06-2.0 mmol/L	平均批间差	4.0 %
灵敏度	0.06 mmol/L	平均批内差	4.0 %
平均回收率	95 %		

2. 标准曲线(数据仅供参考)

①不同浓度的标准品加样量30 µL,按照操作步骤进行实验,读取各点OD值如下表所示:

标准品浓度 (mmol/L)	0.0	0.2	0.5	0.8	1.0	1.2	1.5	2.0
OD 值	0.071	0.091	0.112	0.136	0.147	0.154	0.177	0.204
	0.071	0.091	0.106	0.127	0.142	0.156	0.172	0.205
平均 OD 值	0.071	0.091	0.109	0.132	0.145	0.155	0.174	0.205
绝对 OD 值	0.000	0.020	0.038	0.061	0.074	0.084	0.103	0.134

②制标准曲线,如下图所示:


附录2 实例分析

例如检测人血清(数据仅供参考):

用试剂一将人血清稀释10倍,取30 μ L加入到1.5 mL EP管中,按操作表检测,结果如下: 柠檬酸标准曲线: y=0.0672 x+0.0009,空白孔OD值为0.071,测定孔OD值为0.142,计算结果为:

柠檬酸含量 =
$$(0.142 - 0.071 - 0.0009) \div 0.0672 \times 10 = 10.432 \text{ mmol/L}$$

按照说明书, 测定人血清(稀释10倍, 加样量30 μ L)、小鼠血浆(稀释10倍, 加样量30 μ L)、10%大鼠心组织(稀释20倍, 加样量30 μ L)和10%大鼠肝组织匀浆(稀释20倍, 加样量30 μ L)中的柠檬酸含量(如下图):

附录3 问题答疑

问题 可能原因		建议解决方案		
反应体系中出现浑	样本浓度太大	选择合适稀释倍数,重新测定		
浊	样本保存不当或保存时间 过长	取新鲜样本, 重新检测		

声明

- 1. 试剂盒仅供研究使用,如将其用于临床诊断或任何其他用途,我公司将 不对因此产生的问题负责,亦不承担任何法律责任。
- 2. 实验前请仔细阅读说明书并调整好仪器,严格按照说明书进行实验。
- 3. 实验中请穿着实验服并戴乳胶手套做好防护工作。
- 4. 试剂盒检测范围不等同于样本中待测物的浓度范围。如果样品中待测物 浓度过高或过低,请对样本做适当的稀释或浓缩。
- 若所检样本不在说明书所列样本类型之中,建议先做预实验验证其检测 有效性。
- 6. 最终的实验结果与试剂的有效性、实验者的相关操作以及实验环境等因素密切相关。本公司只对试剂盒本身负责,不对因使用试剂盒所造成的样本消耗负责,使用前请充分考虑样本可能的使用量,预留充足的样本。

附录4 客户发表文献

- Tseng S.Ja. An acid degradable, lactate oxidizing nanoparticle formulation for non-small cell lung cancer virotherapy[J]. Nano Today. IF:18.962
- Salman T M, Iyanda M A, Alli-Oluwafuyi A M, et al. Telfairia occidentalis stimulates hepatic glycolysis and pyruvate production via insulin-dependent and insulin-independent mechanisms[J]. Metabolism Open, 2021, 10(1-10):100092. IF:8.694
- 3. Wang H, Huang Q, Zhang Z, et al. Transient post-operative overexpression of CXCR2 on monocytes of traumatic brain injury patients drives monocyte chemotaxis toward cerebrospinal fluid and enhances monocyte-mediated immunogenic cell death of neurons in vitro[J]. Journal of Neuroinflammation, 2022. IF:7.573
- Carafa V, Russo R, Della Torre L, et al. The Pan-Sirtuin Inhibitor MC2494 Regulates Mitochondrial Function in a Leukemia Cell Line[J]. Frontiers in Oncology, 2020, 10: 820. IF:4.848
- 5. Sun J, Leng P, Li X, et al. Salvianolic acid A promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes through regulation of the AMPK-PGC1α signalling pathway. Adipocyte. 2022;11 (1):562-571. IF:3.553
- Xu X, Cui Y, Li C, et al. SETD3 Downregulation Mediates PTEN Upregulation-Induced Ischemic Neuronal Death Through Suppression of Actin Polymerization and Mitochondrial Function. Mol Neurobiol. 2021; 58 (10):4906-4920. IF:3.464
- 7. Gao S, Li N, Chen R, et al. Bushen Huoxue Formula Modulates Autophagic Flux and Inhibits Apoptosis to Protect Nucleus Pulposus Cells by Restoring the AMPK/SIRT1 Pathway. Biomed Res Int. 2022; 2022:8929448. IF:3.047
- Cheng F, Yu J, Zhang X, et al. CircSEC31A Promotes the Malignant Progression of Non-Small Cell Lung Cancer Through Regulating SEC31A Expression via Sponging miR-376a[J]. Cancer Management and Research, 2020, Volume 12:11527-11539. IF:2.886
- Soebagjo H D, Fatmariyanti S, Paulus Sugianto N, et al. Detection of the Calcium and ATP Role in Apoptosis of Retinoblastoma Culture Cells through Caspase-3 Expression[J].
 Research Journal of Pharmacy and Technology, 2019, 12(03): 1307-1314.
- 10. Al-Ziaydi A G, Al-Shammari A M, Hamzah M I, et al. Newcastle disease virus suppress glycolysis pathway and induce breast cancer cells death[J]. VirusDisease, 2020: 1-8.