A Reliable Research Partner in Life Science and Medicine

Recombinant Human CRABP2 Protein (His Tag)

Catalog Number: PKSH031210

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description

Species Human

Source E.coli-derived Human CRABP2 protein Pro2-Glu 138, with an N-terminal His

 Calculated MW
 16.5 kDa

 Observed MW
 16.5 kDa

 Accession
 NP 001869.1

Bio-activity Not validated for activity

Properties

Purity > 96 % as determined by reducing SDS-PAGE.

Endotoxin Please contact us for more information.

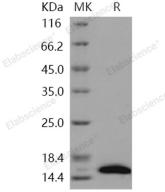
Storage Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80

°C. Reconstituted protein solution can be stored at 4-8°C for 2-7 days. Aliquots of

reconstituted samples are stable at < -20°C for 3 months.

Shipping This product is provided as lyophilized powder which is shipped with ice packs.

Formulation Lyophilized from sterile 20mM Tris, 500mM NaCl, pH 8.0


Normally 5% - 8% trehalose, mannitol and 0.01% Tween 80 are added as protectants

before lyophilization.

Please refer to the specific buffer information in the printed manual.

Reconstitution Please refer to the printed manual for detailed information.

Data

> 96 % as determined by reducing SDS-PAGE.

Background

Web:www.elabscience.com

Elabscience Bionovation Inc.

A Reliable Research Partner in Life Science and Medicine

Cellular retinoic acid-binding protein 2, also known as Cellular retinoic acid-binding protein II, CRABP-II and CRABP2, is a protein which belongs to thecalycin superfamily and Fatty-acid binding protein (FABP) family. Cellular retinoic acid binding proteins (CRABP) are low molecular weight proteins whose precise function remains unknown. The predicted amino acid sequences of human CRABP1 and CRABP2 demonstrated a 99.3% and 93.5% identity to mouse CRABP1 and CRABP2, respectively. CRABP2 forms a beta-barrel structure that accommodates hydrophobic ligands in its interior. Expression of CRABP2, but not CRABP1 mRNA, was markedly increased (greater than 15-fold) by retinoic acid treatment of fibroblasts cultured from human skin, whereas no significant induction of CRABP2 mRNA was observed in human lung fibroblasts. CRABP2 transports retinoic acid to the nucleus. It regulates the access of retinoic acid to the nuclear retinoic acid receptors. CRABP2 is necessary for elastin induction by All-trans retinoic acid (ATRA) in MRC-5 cells. It is expressed at low levels in emphysema fibroblasts. This alteration in the retinoic acid signalling pathway in lung fibroblasts may contribute to the defect of alveolar repair in human pulmonary emphysema.

For Research Use Only

Toll-free: 1-888-852-8623 Web:www.elabscience.com Tel: 1-832-243-6086 Email:techsupport@elabscience.com Fax: 1-832-243-6017