(本试剂盒仅供体外研究使用,不用于临床诊断!)

产品货号: E-BC-K821-M

产品规格: 48T(32 samples)/96T(80 samples)

检测仪器: 酶标仪(390-405 nm)

Elabscience[®]α-葡萄糖苷酶(α-GC)比色法测试盒 α-Glucosidase (α-GC) Activity Assay Kit

使用前请仔细阅读说明书。如果有任何问题. 请通过以下方式联系我们:

电话: 400-999-2100

邮箱: biochemical@elabscience.cn

网址: www.elabscience.cn

具体保质期请见试剂盒外包装标签。请在保质期内使用试剂盒。 联系时请提供产品批号(见试剂盒标签),以便我们更高效地为您服务。

用途

本试剂盒适用于检测动植物组织及真菌中的α-葡萄糖苷酶(α-GC)的活力。

检测原理

 α -葡萄糖苷酶(α -glucosidase, α -GC)又叫 α -D-葡萄糖苷水解酶。 α -GC 在自然界广泛分布,种类繁多,性质各异,几乎存在于所有生物体内。它在动物、植物、微生物的糖类代谢方面具有重要的生理功能。如果 α -GC 缺失,就会导致严重的糖原代谢紊乱和糖原的过度积累,从而引起庞帕氏病(一种常染色体隐性遗传性糖原贮积病,又叫 Π 型糖原生成疾病)。人体组织中 α -GC 活性长期性偏低会引起肌肉纤维的破坏和肌肉萎缩。

本试剂盒的检测原理为 α -葡萄糖苷酶催化底物反应生成的显色物质在波长 400 nm 处有最大吸收,通过测定其在 400 nm 处的 OD 值大小可以反映出 α -GC 的酶活大小。

本试剂盒检测动物组织样本时,需测定总蛋白浓度,推荐使用BCA法。(货号: E-BC-K318-M)。检测植物组织和真菌样本时,需测定总蛋白浓度,推荐使用考马斯亮蓝法。(货号: E-BC-K168-M)。

提供试剂和物品

编号	名称	规格 1 (Size 1)(48 T)	规格 2 (Size 2)(96 T)	保存方式 (Storage)
试剂一 (Reagent 1)	提取液 (Extraction Solution)	50 mL×1 瓶	50 mL×2 瓶	-20℃ 保存6个月
试剂二 (Reagent 2)	缓冲液 (Buffer Solution)	7 mL×1 瓶	14 mL×1 瓶	-20℃ 保存 6 个月
试剂三 (Reagent 3)	底物 (Substrate)	0.5 mL×1 支	1 mL×1 支	-20℃ 避光 保存 6 个月
试剂四 (Reagent 4)	10 mmol/L 标准品溶液 (10 mmol/L Standard Solution)	1 mL×1 支	1 mL×2 支	-20℃ 避光 保存6个月
	96 孔酶标板	48 孔×1 块	96 孔×1 块	无要求
	96 孔覆膜	2 张		
	样本位置标记表	1 5		

说明: 试剂严格按上表中的保存条件保存,不同测试盒中的试剂不能混用。 对于体积较少的试剂,使用前请先离心,以免量取不到足够量的试剂。

所需自备物品

仪器: 酶标仪(390-405 nm, 最佳检测波长 400 nm)、37℃ 恒温箱

试剂准备

- ① 检测前, 试剂盒中的试剂平衡至室温。
- ② 工作液的配制:

试剂三: 试剂二按照体积比=1:14配制,按需配制,配制好的工作液1天内使用有效。

③ 1 mmol/L标准品的配制:

将试剂四: 双蒸水按体积比=1:9配制, 避光待用, 现配现用, 当天使用有效。

④ 不同浓度标准品的稀释:

编号	1	2	3	4	⑤	6	7	8
标准品浓度(mmol/L)	0	0.1	0.2	0.3	0.4	0.5	0.7	1
1 mmol/L 标准品(μL)	0	20	40	60	80	100	140	200
双蒸水(μL)	200	180	160	140	120	100	60	0

样本准备

① 样本处理

组织和真菌样本:按照组织样本质量(g): 试剂一体积(mL)=1:9的比例匀浆,4°C,12000×g离心15 min,取上清置于冰盒上待测,留取部分上清进行蛋白浓度测定。

② 样本的稀释

在正式检测前,需选择2-3个预期差异大的样本稀释成不同浓度进行预实验,根据预实验的结果,结合本试剂盒的线性范围: 0.35-33.43 U/L,请参考下表稀释(仅供参考):

样本	稀释倍数	样本	稀释倍数	
10%小鼠小肠组织	1-2	10%杏鲍菇组织	不稀释	
10%大鼠肾组织	1-2	10%香梨籽	不稀释	
10%澳柑籽	不稀释	10%玉米组织	不稀释	
10%小鼠肾组织	1-2	10%苹果籽	不稀释	

注:稀释液为试剂一。

操作步骤

- ① 标准孔: 取 20 μL 不同浓度的标准品溶液分别加入相应的酶标孔中; 测定孔: 取 20 μL 待测样本加入相应的酶标孔中。
- ② 向步骤①的标准孔中加入 120 µL 试剂二。 向步骤①的测定孔中加入 120 µL 工作液。
- ③ 振板 5 s, 酶标仪 400 nm 波长下检测测定孔 OD 值 A₁。37°C 孵育 30 min 后检测测定孔 OD 值 A₂ 和标准孔的 OD 值。

操作表

	标准孔	测定孔
不同浓度的标准品溶液(μL)	20	-
待测样本(μL)		20
试剂二(μL)	120	
工作液(μL)		120

振板 $5\,s$,酶标仪 $400\,nm$ 波长下检测测定孔 OD 值 A_1 。 37° C 孵育 $30\,min$ 后检测测定孔 OD 值 A_2 和标准孔的 OD 值。

本试剂盒检测动物组织样本时,需测定总蛋白浓度,推荐使用BCA法。(货号: E-BC-K318-M)。检测植物组织和真菌样本时,需测定总蛋白浓度,推荐使用考马斯亮蓝法。(货号: E-BC-K168-M)。

结果计算

标准品拟合曲线: y=ax+b

样本中α-葡萄糖苷酶(α-GC)活力计算公式:

定义: 37°C 条件下, 每克样本组织蛋白每分钟催化底物产生 1 μmol 的产物所需要的酶量为一个活力单位。

$$\frac{\alpha\text{-GC}$$
 活力 = (ΔA₄₀₀ - b) ÷ a ÷ T × f ÷ C_{pr} ×1000*

注解:

y: 标准品 OD 值-空白 OD 值(标准品浓度为 0 时的 OD 值)

x: 标准品的浓度

a: 标曲的斜率

b: 标曲的截距

 ΔA_{400} : 样本的变化 OD 值, $\Delta A_{400} = A_2 - A_1$

T: 反应时间 30 min

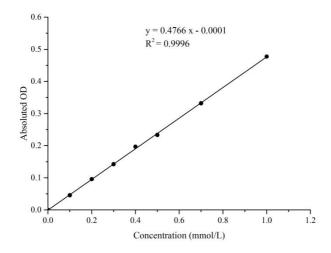
f: 样本加入检测体系前的稀释倍数

Cpr: 待测样本的蛋白浓度, gprot/L

 $1000*: 1 \text{ mmol/L} = 1000 \text{ } \mu\text{mol/L}$

附录1 关键数据

1.技术参数

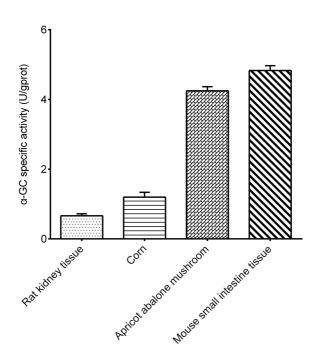

检测范围	检测范围 0.35-33.43 U/L		4.2-6.6%	
灵敏度	0.35 U/L	批内差	4.4-5.7%	
稀释回收率	98-110%			

2.标准曲线(数据仅供参考)

① 不同浓度标准品加样量20 µL, 按照操作步骤进行实验, OD值如下表所示:

标准品浓度 (mmol/L)	0	0.1	0.2	0.3	0.4	0.5	0.7	1.0
OD 值	0.040	0.086	0.136	0.184	0.256	0.276	0.380	0.521
	0.041	0.087	0.137	0.182	0.219	0.272	0.365	0.515
平均 OD 值	0.041	0.087	0.137	0.183	0.238	0.274	0.373	0.518
绝对 OD 值	0	0.046	0.096	0.143	0.197	0.234	0.332	0.478

② 绘制标曲(如下图):


附录2 实例分析

例如小鼠小肠组织(数据仅供参考):

将10%小鼠小肠组织匀浆稀释2倍,取20 μ L按操作表进行检测,结果如下:标准曲线: y=0.4766 x-0.0001,测定的OD值 A_1 为0.095, A_2 为0.407, $\Delta A_{400}=A_2-A_1=0.407-0.095=0.312$,同时测得匀浆蛋白浓度为9.06 gprot/L,计算结果为:

 α -GC活力(U/gprot) = (0.312 + 0.0001) ÷ 0.4766 ÷ 30 ÷ 9.06 × 2 × 1000 = 4.82 U/gprot

接说明书操作,测定大鼠肾组织(10%组织蛋白浓度为12.22 gprot/L,稀释2倍,加样量20 μ L)、玉米组织(10%组织蛋白浓度为1.56 gprot/L,加样量20 μ L)、杏鲍菇组织(10%组织蛋白浓度为0.34 gprot/L,加样量20 μ L)、小鼠小肠组织(10%组织蛋白浓度为9.06 gprot/L,稀释2倍,加样量20 μ L)中的 α -GC活力(如下图):

声明

- 1. 试剂盒仅供研究使用,如将其用于临床诊断或任何其他用途,我公司将 不对因此产生的问题负责,亦不承担任何法律责任。
- 2. 实验前请仔细阅读说明书并调整好仪器,严格按照说明书进行实验。
- 3. 实验中请穿着实验服并戴乳胶手套做好防护工作。
- 4. 试剂盒检测范围不等同于样本中待测物的浓度范围。如果样品中待测物 浓度过高或过低,请对样本做适当的稀释或浓缩。
- 5. 若所检样本不在说明书所列样本类型之中,建议先做预实验验证其检测 有效性。
- 6. 最终的实验结果与试剂的有效性、实验者的相关操作以及实验环境等因素密切相关。本公司只对试剂盒本身负责,不对因使用试剂盒所造成的样本消耗负责,使用前请充分考虑样本可能的使用量,预留充足的样本。