(本试剂盒仅供体外研究使用,不用于临床诊断!)

产品货号: E-BC-K207-M

产品规格: 48T(44 samples)/96T(92 samples)

检测仪器: 酶标仪(405 nm)

Elabscience[®]钠离子(Na)比色法测试盒 Sodium (Na) Colorimetric Assay Kit

使用前请仔细阅读说明书。如果有任何问题,请通过以下方式联系我们:

电话: 400-999-2100

邮箱: biochemical@elabscience.cn

网址: www.elabscience.cn

具体保质期请见试剂盒外包装标签。请在保质期内使用试剂盒。 联系时请提供产品批号(见试剂盒标签),以便我们更高效地为您服务。

用途

本试剂盒适用于测定血清(浆)、组织样本中钠离子浓度。

检测原理

通过钠离子激活的β-半乳糖苷酶催化底物硝基吡喃糖苷生成硝基苯酚。 单位时间内硝基苯酚在 405 nm 的吸光值上升速率与钠浓度成正比例。

本试剂盒在检测组织样本时,需要测定总蛋白浓度,推荐使用 BCA 法(货号: E-BC-K318-M)。

提供试剂和物品

编号	名称	规格 1 (Size 1)(48T)	规格 2 (Size 2)(96T)	保存方式 (Storage)
试剂一	显色剂	5 mL×1 瓶	10 mL×1 瓶	2-8°C 避光
(Reagent 1)	(Chromogenic Agent)	J IIILAT //A	TO IIILAT //A	保存6个月
试剂二 (Reagent 2)	酶贮备液 (Enzyme Stock Solution)	10 mL×1 瓶	20 mL×1 瓶	2-8°C 保存6个月
试剂三 (Reagent 3)	酶试剂 (Enzyme Reagent)	粉剂×1 支	粉剂×2 支	2-8°C 保存6个月
试剂四 (Reagent 4)	10 mmol/L 标准品 (10 mmol/L Standard)	1.6 mL×1 支	1.6 mL×1 支	2-8°C 保存6个月
	96 孔酶标板	48 孔×1 块	96 孔×1 块	无要求
	96 孔覆膜	2 张		
	样本位置标记表	1 张		

说明: 试剂严格按上表中的保存条件保存,不同测试盒中的试剂不能混用。 对于体积较少的试剂,使用前请先离心,以免量取不到足够量的试剂。

所需自备物品

仪器: 酶标仪 (405 nm)

试剂准备

- (1) 检测前, 试剂盒中的试剂平衡至室温。
- ② 工作液配制:

取一支试剂三用8 mL试剂二溶解, 2-8°C可保存1天。

样本准备

1 样本处理

血清血浆样本:稀释可后直接测定。

组织样本:按照组织样本质量(g):双蒸水体积(mL)=1:9匀浆,离心后取上清待测,留取部分上清进行蛋白浓度测定。

② 样本的稀释

在正式检测前,需选择2-3个预期差异大的样本稀释成不同浓度进行预实验,根据预实验的结果,结合本试剂盒的线性范围: 0.02-20 mmol/L,可参考下表进行稀释(仅供参考):

样本	稀释倍数	样本	稀释倍数
人血清	9-12	人血浆	9-12
小鼠血清	9-12	大鼠血浆	10-15

注:稀释液为双蒸水。

实验关键点

样本钠离子含量较高, 需要稀释后测定。

操作步骤

① 空白孔: 向酶标板相应的空白孔加入 10 μL 双蒸水,标准孔: 向酶标板相应的标准孔加入 10 μL 标准品,测定孔: 向酶标板相应的测定孔中加入 10 μL 待测样本。

- ② 向步骤①各孔中加入80 µL 试剂一。
- ③ 向步骤②各孔中加入 120 µL 工作液。
- ④ 酶标仪于波长 405 nm 处测定各孔吸光度,记为 A₁。
- ⑤ 37°C 孵育 3 min, 酶标仪于波长 405 nm 处测定各孔吸光度, 记为 A₂, ΔA=A₂-A₁。

注:移液枪移取液体时,小心吸打,避免产生气泡。

操作表

	空白孔	标准孔	测定孔
待测样本(μL)			10
标准品(μL)		10	
双蒸水(μL)	10		
试剂一(μL)	80	80	80
工作液(μL)	120	120	120

酶标仪于波长 $405\,\mathrm{nm}$ 处测定各孔吸光度,记为 A_1 , $37^{\circ}\mathrm{C}$ 孵育 $3\,\mathrm{min}$,酶标仪于波长 $405\,\mathrm{nm}$ 处测定各孔吸光度,记为 A_2 , $\Delta A = A_2 - A_1$ 。

本试剂盒检测组织样本时,需测定总蛋白浓度,推荐使用 BCA 法(货号: E-BC-K318-M)。

结果计算

血清(浆)样本中钠离子浓度计算公式:

納离子 =
$$\frac{\Delta A_{\cancel{\#}} - \Delta A_{\cancel{2}}}{\Delta A_{\cancel{\#}} - \Delta A_{\cancel{2}}} \times c \times f$$

组织样本中钠离子浓度计算公式:

納离子
$$\frac{\Delta A_{\cancel{\#}} - \Delta A_{\cancel{g}}}{\Delta A_{\cancel{\#}} - \Delta A_{\cancel{g}}} \times c \div C_{pr} \times f$$

注解:

ΔA #: 样本测定孔 OD 值(A2-A1)

ΔA g: 空白孔 OD 值(A2-A1)

ΔA *: 标准孔 OD 值(A₂-A₁)

c: 标准品浓度: 10 mmol/L

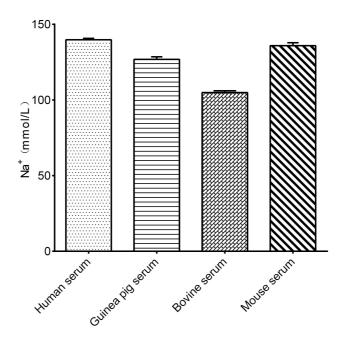
C_{pr}: 待测样本的蛋白浓度, gprot/L f: 样本加入检测体系前的稀释倍数

附录1 关键数据

1. 技术参数

检测范围	0.02 - 20 mmol/L	平均批间差	8.4 %
灵敏度	0.02 mmol/L	平均批内差	2.2 %
平均回收率	98%		

附录2 实例分析


例如检测人血清(数据仅供参考):

取10 µL稀释10倍的人血清参考说明书操作步骤进行测定,结果如下:

测定孔 ΔA_{\sharp} : 0.433, 空白孔 $\Delta A_{\underline{\alpha}}$: 0.146, 标准孔 ΔA_{\sharp} : 0.351, 待测样本 纳离子浓度计算结果为:

钠离子浓度 =
$$\frac{0.433 - 0.146}{0.351 - 0.146} \times 10 \times 10 = 140 \text{ mmol/L}$$

按照说明书操作,测定人血清(加样量 $10\,\mu$ L,稀释10倍)、豚鼠血清(加样量 $10\,\mu$ L,稀释10倍)、牛血清(加样量 $10\,\mu$ L,稀释106)和小鼠血清(加样量 $10\,\mu$ L,稀释106)中钠离子浓度(如下图):

声明

- 1. 试剂盒仅供研究使用,如将其用于临床诊断或任何其他用途,我公司将 不对因此产生的问题负责,亦不承担任何法律责任。
- 2. 实验前请仔细阅读说明书并调整好仪器,严格按照说明书进行实验。
- 3. 实验中请穿着实验服并戴乳胶手套做好防护工作。
- 4. 试剂盒检测范围不等同于样本中待测物的浓度范围。如果样品中待测物 浓度过高或过低,请对样本做适当的稀释或浓缩。
- 5. 若所检样本不在说明书所列样本类型之中,建议先做预实验验证其检测 有效性。
- 6. 最终的实验结果与试剂的有效性、实验者的相关操作以及实验环境等因素密切相关。本公司只对试剂盒本身负责,不对因使用试剂盒所造成的样本消耗负责,使用前请充分考虑样本可能的使用量,预留充足的样本。

附录4 客户发表文献

- 1. Sun T, Hui J, Lin B, et al. Sequential biofluid sampling microfludic multi-sensing patch for more accurate sweat analysis under sedentary condition[J]. Applied Materials Today, 2023, 34: 101910.
- 2. Lin B, Li F, Hui J, et al. Modular Reconfigurable Approach Toward Noninvasive Wearable Body Net for Monitoring Sweat and Physiological Signals[J]. ACS sensors, 2024.
- 3. Siboto A, Akinnuga A M, Khumalo B, et al. Ameliorative Effects of a Rhenium (V) Compound with Uracil-Derived Ligand Markers Associated with Hyperglycaemia-Induced Renal Dysfunction in Diet-Induced Prediabetic Rats[J]. International Journal of Molecular Sciences, 2022, 23(23): 15400.
- 4. Yu S, He Z, Gao K, et al. Dioscorea composita WRKY12 is involved in the regulation of salt tolerance by directly activating the promoter of AtRCI2A[J]. Plant Physiology and Biochemistry, 2023, 196: 746-758.
- 5. Lv H, Niu J, Pan W, et al. Stool-softening effect and action mechanism of free anthraquinones extracted from Rheum palmatum L. on water deficit-induced constipation in rats[J]. Journal of Ethnopharmacology, 2024, 319: 117336.
- **6.** Wang X, Huang Y, Sun X, et al. Protective Role of Anthraquinone Purpurin Against Cardiotoxicity Induced by Isoproterenol in Adult Wistar Rats[J]. Pharmacognosy Magazine, 2025, 21(1): 256-268.