

Recombinant Histone H4 (Acetyl Lys12) Monoclonal Antibody

catalog number: AN301411L

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description

Reactivity Human;Rat;Mouse

Immunogen Acetylated human histone H4 (Lys12) peptide

Host Rabbit Isotype lgG, κ Clone A106

Purification Protein Apurified

Buffer PBS, 50% glycerol, 0.05% Proclin 300, 0.05% protein protectant.

Applications Recommended Dilution

1:500-1:1000 WB 1:50-1:200 IHC

Data

Western Blot with Histone H4 (Acetyl Lys12) Monoclonal Antibody at dilution of 1:1000. (-): MCF-7, (+): MCF-7+ Sodium butyrate (50mM, 24hr) + Trichostatin A (500ng/ml, 4

Observed-MW:11 kDa Calculated-MW:11 kDa

Western Blot with Histone H4 (Acetyl Lys12) Monoclonal Antibody at dilution of 1:1000. (-): C6, (+): C6+Trichostatin A (500ng/ml,4h)

Observed-MW:11 kDa Calculated-MW:11 kDa

Western Blot with Histone H4 (Acetyl Lys12) Monoclonal Antibody at dilution of 1:1000. (-): NIH/3T3, (+): NIH/3T3+Trichostatin A (500ng/ml,4h)

> Observed-MW:11 kDa Calculated-MW:11 kDa

Immunohistochemistry of paraffin-embedded Human spleen using Histone H4 (Acetyl Lys12) Monoclonal Antibody at dilution of 1:200.

For Research Use Only

Toll-free: 1-888-852-8623 Fax: 1-832-243-6017 Tel: 1-832-243-6086 Web: www.elabscience.com Email: techsupport@elabscience.com Rev. V1.1

Elabscience®

Elabscience Bionovation Inc.

A Reliable Research Partner in Life Science and Medicine

Immunohistochemistry of paraffin-embedded Mouse pancreas using Histone H4 (Acetyl Lys12) Monoclonal Antibody at dilution of 1:200.

Immunohistochemistry of paraffin-embedded Rat pancreas using Histone H4 (Acetyl Lys12) Monoclonal Antibody at dilution of 1:200.

Preparation & Storage

Storage Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles.

Shipping Ice bag

Background

Histone post-translational modifications (PTMs), known as the "histone code", are key mechanisms of epigenetics that modulate chromatin structures. The PTMs on histone including acetylation, methylation, phosphorylation, and novel acylations directly affect the accessibility of chromatin to transcription factors and other epigenetic regulators, altering genome stability and gene transcription. Histone acetylation, tightly controlled by the opposing action of histone acetyltransferases (HATs) and histone deacetylases (HDACs), occurs primarily at lysine residues on the N-terminal tails of histones H2A (Lys5, 9, and 15), H2B (Lys5, 12, 15, 16, and 20), H3 (Lys4, 9, 14, 18, 23, 27, and 36), and H4 (Lys5, 8, 12, 16, and 20), and plays vital roles in the regulation of gene expression, DNA damage repair, chromatin dynamics, etc.