

Advanced MEM

Cat. No. : PM153410

Size : 500mL

General Information

Product Form	Liquid
Concentration	1×
pH	7.0-7.4
D-Glucose	1000 mg/L
L-Glutamine	292 mg/L
Sodium pyruvate	110 mg/L
Phenol red	10 mg/L
Non-Essential Amino Acids	Positive
HEPES	Negative
Osmotic pressure	260-310 mOsm/kg
Solvent	Purified water
Storage	2-8°C, Shading Light
Shipping	Ice bag
Expiration date	12 months

Background

Advanced MEM is a widely used basal medium that allows the culture of mammalian cells with reduced Fetal Bovine Serum (FBS) supplementation. Compared to classic MEM, serum supplementation can be reduced by 50-90% with no change in cellular proliferation or morphology. Many cell lines do not need to be domesticated to use this medium. Cells successfully cultured in Advanced MEM, with no adaptation, include Vero, HK-2, Hep G2, Caco-2, NCTC Clone 929, Hela, U-87 MG, HMC3, PK-15, etc. Advanced MEM medium can achieve the serum-reduced effect due to the addition of the following ingredients: ethanolamine, glutathione, ascorbic acid, insulin, transferrin, bovine serum albumin and various trace elements (sodium selenite, ammonium metavanadate, copper sulfate and manganese chloride).

Prepare Complete Media

Advanced MEM medium requires supplementation with 1-5% fetal bovine serum (FBS) and 1% L-alanyl-L-glutamine solution (GlutaMAX) (Cat. No.: PB180419) to maintain normal cell growth.

To prepare 1 L Advanced Reduced Serum Complete Media:

1. Aseptically add 20 mL GlutaMAX (200 mM).
2. Aseptically add 10-50 mL FBS.

Note: Optimize the FBS concentration for each cell line to obtain maximum serum reduction.

3. Add antibiotics, if required. Cellular growth may be impeded by the addition of antibiotics. We recommend reducing the amount of antibiotic by the same percentage that serumsupplementation is reduced.

Culture Use Conditions

Temperature: 37°C

Incubator atmosphere: Humidified atmosphere of 5-10% CO₂ in air. Ensure proper gas exchange andminimize exposure of cultures to light.

Adapt cell lines to reduced serum media

For most cell lines, no adaptation is necessary (see **Direct adaptation**) to attain at least a 50% reduction in serum supplementation levels. If suboptimal cell growth characteristics (e.g., growth rate, morphology, or secondary metabolite production levels) are observed or additional serum reduction is desired use the **sequential adaptation** procedure. Successful adaptation will depend on the particular cell line and the culture conditions employed. We recommend maintaining backup cultures in the original medium until achieving success with the new medium.

Note: For best results cell viability should be ≥90% and growth rate be in mid-logarithmic phase prior toadaptation.

Direct adaptation

1. Subculture cells grown in conventional medium with 5-10% FBS into the appropriate (see **Table1**) prewarmed complete Advanced Media.
2. Monitor cell growth and subculture following your normal protocol using the appropriate (see **Table1**)prewarmed complete Advanced Media.
3. Cell cultures are considered to be adapted after 3-5 passages of consistent growth.

Note: If suboptimal performance is observed using the direct adaptation method over 3-5 passages, use the sequential adaptation method.

Sequential adaptation

1. Subculture cells grown in conventional medium with 5-10% FBS into a 25:75 ratio of the appropriate(see **Table 1**) prewarmed complete Advanced Media to the original media.
2. Monitor cell growth and subculture following your normal protocol into stepwise increasing ratios of newmedia to the original media (50:50, followed by 75:25, then 90:10). Multiple passages at each stepmaybe needed.
3. Subculture cells into 100% prewarmed complete Advanced Reduced Serum Media, and continueto monitor and passage cells until consistent growth is achieved. After several passages of consistent growthand viability in 100% complete Advanced Reduced Serum Media the culture is considered to be adapted.

Table 1 Recommended Serum Levels. For use in Advanced Serum Reduced Media:

Cell line	% FBS
Vero	5%
HK-2	2-5%
Hep G2	2-5%
Caco-2	5%
NCTC Clone 929	2-5%
HeLa	5%
U-87 MG	5%
HMC3	5%
PK-15	5%

(For cells outside the list, please refer to the above method for testing and optimization) ®

Notes

1. Not all cells are suitable for reduced serum culture. Be sure to test the effect in a small amount before replacing it. If necessary, the FBS concentration should be optimized for each cell line to obtain maximum serum reduction.
2. This product has been filtered and sterilized. Pay attention to aseptic operation to avoid contamination.
3. To maintain the best use of this product, do not perform freeze-thaw treatment.
4. For research use or further manufacturing. Not for diagnostic use or direct administration into humans or animals.