

A Reliable Research Partner in Life Science and Medicine

Recombinant PKC mu Monoclonal Antibody

catalog number: AN301985L

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description

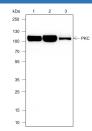
Reactivity Human;

Immunogen Peptide. This information is proprietary to PTMab.

 Host
 Rabbit

 Isotype
 IgG, κ

 Clone
 A705


Purification Protein A purified

Buffer PBS, 50% glycerol, 0.05% Proclin 300, 0.05% protein protectant.

Applications Recommended Dilution

WB 1:1000

Data

Western Blot with PKC mu Monoclonal Antibody at dilution of 1:1000. Lane 1: HeLa, Lane 2: PC-3, Lane 3: LNCaP

Observed-MW:110 kDa Calculated-MW:102 kDa

Preparation & Storage

Storage Storage Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles.

Shipping Ice bag

Background

For Research Use Only

Elabscience®

Elabscience Bionovation Inc.

A Reliable Research Partner in Life Science and Medicine

Activation of protein kinase C (PKC) is one of the earliest events in a cascade that controls a variety of cellular responses, including secretion, gene expression, proliferation, and muscle contraction. PKC isoforms belong to three groups based on calcium dependency and activators. Classical PKCs are calcium-dependent via their C2 domains and are activated by phosphatidylserine (PS), diacylglycerol (DAG), and phorbol esters (TPA, PMA) through their cysteine-rich C1 domains. Both novel and atypical PKCs are calcium-independent, but only novel PKCs are activated by PS, DAG, and phorbol esters. Members of these three PKC groups contain a pseudo-substrate or autoinhibitory domain that binds to substrate-binding sites in the catalytic domain to prevent activation in the absence of cofactors or activators. Control of PKC activity is regulated through three distinct phosphorylation events. Phosphorylation occurs in vivo at Thr500 in the activation loop, at Thr641 through autophosphorylation, and at the carboxy-terminal hydrophobic site Ser660. Atypical PKC isoforms lack hydrophobic region phosphorylation, which correlates with the presence of glutamic acid rather than the serine or threonine residues found in more typical PKC isoforms. The enzyme PDK1 or a close relative is responsible for PKC activation. A recent addition to the PKC superfamily is PKCµ (PKD), which is regulated by DAG and TPA through its C1 domain. PKD is distinguished by the presence of a PH domain and by its unique substrate recognition and Golgi localization. PKC-related kinases (PRK) lack the C1 domain and do not respond to DAG or phorbol esters. Phosphatidylinositol lipids activate PRKs, and small Rhofamily GTPases bind to the homology region 1 (HR1) to regulate PRK kinase activity.

For Research Use Only

 Toll-free: 1-888-852-8623
 Tel: 1-832-243-6086
 Fax: 1-832-243-6017

 Web: www.elabscience.com
 Email: techsupport@elabscience.com
 Rev. V1.0