Recombinant Human STUB1 Protein

Catalog Number: PKSH032367

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description			
Species			Human
Source			E.coli-derived Human STUB1 protein Met 1-Tyr303
Calculated MW			34.9 kDa
Observed MW			33 kDa
Accession			Q9UNE7
Bio-activity			Not validated for activity
Properties			
Purity			> 95 % as determined by reducing SDS-PAGE.
Concentration			Subject to label value.
Endotoxin			< 1.0 EU per µg of the protein as determined by the LAL method.
Storage			Store at $<$ -20°C, stable for 6 months. Please minimize freeze-thaw cycles.
Shipping			This product is provided as liquid. It is shipped at frozen temperature with blue ice/gel
			packs. Upon receipt, store it immediately at < - 20°C.
Formulation			Supplied as a 0.2 µm filtered solution of PBS, pH7.4.
Data			
	kDa	MK	R
	120		
	60		
	40		
	30		
	20	-	
	14		

Background

E3 Ubiquitin-Protein Ligase CHIP is a cytoplasmic protein. CHIP is highly expressed in skeletal muscle, heart, pancreas, brain and placenta. CHIP interacts with the molecular chaperones Hsc70-Hsp70 and Hsp90 through its TPR domain; lead to in client substrate ubiquitylation and degradation by the proteasome. CHIP targets misfolded chaperone substrates towards proteasomal degradation. CHIP mediates transfer of non-canonical short ubiquitin chains to HSPA8 that have no effect on HSPA8 degradation. CHIP plays a role in base-excision repair: catalyzes polyubiquitination by amplifying the HUWE1/ARF-BP1-dependent monoubiquitination and leading to POLB-degradation by the proteasome. It also may regulate the receptor stability and activity through proteasomal degradation.