Recombinant Human PARP-1 Protein (His Tag)

Catalog Number: PKSH031294

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description	
Species	Human
Source	Baculovirus-Insect Cells-derived Human PARP-1 protein Met 1-Trp 1014, with an C-
	terminal His
Calculated MW	114.5 kDa
Observed MW	100-110 kDa
Accession	NP_001609.2
Bio-activity	Immobilized human PARP1 at 10 μ g/mL (100 μ l/well) can bind biotinylated human
	HSP70, The EC ₅₀ of biotinylated human HSP70 is 0.035 μ g/mL.
Properties	
Purity	> 90 % as determined by reducing SDS-PAGE.
Concentration	Subject to label value.
Endotoxin	< 1.0 EU per µg of the protein as determined by the LAL method.
Storage	Store at $<$ -20°C, stable for 6 months. Please minimize freeze-thaw cycles.
Shipping	This product is provided as liquid. It is shipped at frozen temperature with blue ice/gel
	packs. Upon receipt, store it immediately at $<$ -20°C.
Formulation	Supplied as sterile 20 mM Tris, 300 mM NaCl, 10 % glycerol, 0.5 mM TCEP, 2mM
	EDTA, pH 7.5.
Data	
	KDa M
	212
	158
	97.2

Background

66.4

55.6 42.7

34.6

> 90 % as determined by reducing SDS-PAGE.

Elabscience®

Poly (ADP-ribose) polymerase 1(PRAP1), also known as NAD(+) ADP-ribosyltransferase 1(ADPRT), is a chromatinassociated enzyme which modifies various nuclear proteins by poly(ADP-ribosyl)ation. The ADP-D-ribosyl group of NAD+ is transferred to an acceptor carboxyl group on a histone or the enzyme itself, and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units. The poly(ADP-ribosyl)ation modification is critical for a wide range of processes, including DNA repair, regulation of chromosome structure, transcriptional regulation, mitosis and apoptosis. PARP1 is demonstrateed to mediate the poly(ADP-ribose) ation of APLF (aprataxin PNK-like factor) and CHFR (checkpoint protein with FHA and RING domains), two representative proteins involved in the DNA damage response and checkpoint regulation. Further, It has been suggested that DNA-dependent protein kinase (DNA-PK), another component of DNA repair, suppresses PARP activity, probably through direct binding and/or sequestration of DNA-ends which serve as an important stimulator for both enzymes. PARP1 inhibitors is thus proposed as a targeted cancer therapy for recombination deficient cancers, such as BRCA2 tumors.