(本试剂盒仅供体外研究使用,不用于临床诊断!)

产品货号: E-BC-K188-M

产品规格: 48T(32 samples)/96T(80 samples)

检测仪器: 酶标仪(510-520 nm)

Elabscience®肌酐(Cr)比色法测试盒(肌氨酸氧化酶法)

Creatinine (Cr) Colorimetric Assay Kit

(Sarcosine Oxidase Method)

使用前请仔细阅读说明书。如果有任何问题,请通过以下方式联系我们:

电话: 400-999-2100

邮箱: biochemical@elabscience.cn

网址: www.elabscience.cn

具体保质期请见试剂盒外包装标签。请在保质期内使用试剂盒。 联系时请提供产品批号(见试剂盒标签),以便我们更高效地为您服务。

用途

本试剂盒适用于检测血清、血浆、尿液等样本中肌酐的含量。

检测原理

肌酐在肌酐酶的催化下生成肌酸, 肌酸在肌酸酶的催化下生成肌氨酸和尿素, 肌氨酸再经肌氨酸氧化酶催化生成甘氨酸、甲醛和过氧化氢。过氧化氢与显色剂在过氧化物酶的催化下反应生成粉红色化合物, 可通过测定 515 nm 波长下的 OD 值变化,来测定计算出肌酐的含量。

提供试剂和物品

编号	名称	規格 1 (Size 1)(48T)	规格 2 (Size 2)(96T)	保存方式 (Storage)
试剂一 (Reagent 1)	酶溶液 A (Enzyme Solution A)	10 mL×1 瓶	20 mL×1 瓶	2-8°C 避光 保存 3 个月
试剂二 (Reagent 2)	酶溶液 B (Enzyme Solution B)	3.5 mL×1 瓶	7 mL×1 瓶	2-8°C 避光 保存 3 个月
试剂三 (Reagent 3)	1 mmol/L 标准品溶液 (1 mmol/L Standard Solution)	1.5 mL×1 支	1.5 mL×2 支	2-8°C 保存3个月
	96 孔酶标板	48 孔×1 块	96 孔×1 块	无要求
	96 孔覆膜	2	张	
	样本位置标记表	1	张	

说明: 试剂严格按上表中的保存条件保存,不同测试盒中的试剂不能混用。 对于体积较少的试剂,使用前请先离心,以免量取不到足够量的试剂。

所需自备物品

仪器: 酶标仪(510-520 nm, 最佳检测波长 515 nm)

试剂: 双蒸水、生理盐水(0.9% NaCl)

试剂准备

① 检测前, 试剂盒中的试剂平衡至室温。

② 不同浓度标准品的稀释:

编号	1	2	3	4	5	6	7	8
标准品浓度(mmol/L)	0	0.1	0.15	0.2	0.25	0.3	0.35	0.4
1 mmol/L 标准品(μL)	0	20	30	40	50	60	70	80
双蒸水(μL)	200	180	170	160	150	140	130	120

样本准备

1 样本处理

血清血浆等液体样本:直接测定。

② 样本的稀释

在正式检测前,需选择2-3个预期差异大的样本稀释成不同浓度进行预实验,根据预实验的结果,结合本试剂盒的线性范围: 20.45-400 μmol/L,可参考下表进行稀释(仅供参考):

样本	稀释倍数	样本	稀释倍数
人尿液	40-60	大鼠血清	不稀释
人血清	不稀释	猪血清	不稀释
小鼠血清	不稀释		

注:稀释液为生理盐水(0.9% NaCl)。

实验关键点

- ① 样本加入板孔中时, 应触底加入。
- ② 样本数量较多时建议使用排枪加液,没有排枪时建议测定孔控制在20个以内。

操作步骤

- ① 标准孔: 取 12 μL 不同浓度标准品, 加入到对应的标准孔中; 样本孔: 取 12 μL 待测样本, 加入到样本孔中。
- ② 向①中各孔加入 180 µL 试剂一。
- ③ 37°C 条件下孵育 5 min。
- ④ 向标准、测定各孔中加入 60 μL 试剂二。
- ⑤ 37°C 条件下孵育 2 min, 酶标仪 515 nm 处, 测定各孔 OD 值为 A1。
- ⑥ 37°C 条件下孵育 8 min, 酶标仪 515 nm 处, 测定各孔 OD 值为 A₂。

操作表

	标准孔	测定孔			
不同浓度标准品(μL)	12				
样本(μL)		12			
试剂一(μL)	180	180			
37°C 孵育 5 min					
试剂二(μL)	60	60			

 37° C 孵育 2 min, 酶标仪 515 nm 处, 测定各孔 OD 值为 A_1 ; 37° C 孵育 8 min, 酶标仪 515 nm 处, 测定各孔 OD 值为 A_2 , 各孔 ΔA = A_2 - A_1

结果计算

标准品拟合曲线: y = ax + b

血清(浆)、尿液中肌酐含量计算公式:

$$\frac{Cr$$
 含量 $(\Delta A_{515} - b) \div a \times 1000* \times f$

注解:

y:标准品 ΔA -空白 ΔA (标准品浓度为0时的 ΔA)

x: 标准品的浓度

a: 标曲的斜率

b: 标曲的截距

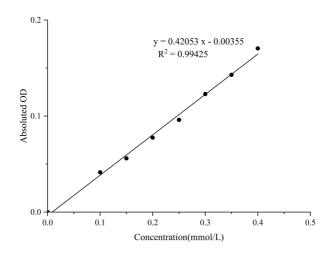
ΔA515: 样本ΔA-空白ΔA

*: 标曲中浓度单位为 mmol/L, 将单位换算成 μmol/L

f: 待测样本加入检测体系前的稀释倍数

附录1 关键数据

1. 技术参数


检测范围	20.45-400 μmol/L	平均批间差	3.7 %
灵敏度	3.8 μmol/L	平均批内差	1.4 %
平均回收率	106 %		

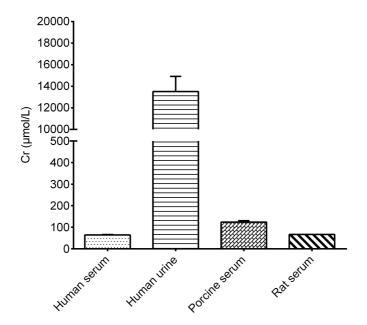
2. 标准曲线(数据仅供参考)

①标准品浓度测定数据:

标准品浓度 (mmol/L)	0	0.1	0.15	0.2	0.25	0.3	0.35	0.4
A ₁ 值	0.056	0.074	0.080	0.087	0.089	0.098	0.112	0.114
A1 18.	0.066	0.070	0.076	0.084	0.091	0.096	0.104	0.118
平均 A1 值	0.061	0.072	0.078	0.086	0.090	0.097	0.108	0.116
A2值	0.056	0.114	0.137	0.166	0.185	0.226	0.256	0.283
A2 1BL	0.067	0.114	0.132	0.161	0.188	0.215	0.247	0.291
平均 A2 值	0.062	0.114	0.135	0.164	0.187	0.221	0.252	0.287
平均 A2-A1 值	0.001	0.042	0.057	0.078	0.097	0.124	0.144	0.171
绝对 OD 值	0.000	0.042	0.056	0.078	0.096	0.123	0.143	0.171

②绘制标曲(如下图):

附录2 实例分析


例如检测小鼠血清(数据仅供参考):

取小鼠血清12 µL, 按操作表检测, 结果如下:

Cr的标准曲线: y = 0.4205 x - 0.004, 测定孔平均ΔA为0.008, 空白孔平均ΔA为0.001, 计算结果为:

$$\frac{\text{Cr}}{2}$$
 (0.008 - 0.001 + 0.004)÷ 0.4205 × 1000 = 26.16 μ mol/L (μ mol/L)

按照说明书操作,测定人血清(加样量 $12 \mu L$)、人尿液(稀释40倍,加样量 $12 \mu L$)、猪血清(加样量 $12 \mu L$)、大鼠血清(加样量 $12 \mu L$)(如下图):

附录3 问题答疑

问题 可能原因		建议解决方案		
样本显色很低	孵育时间太短	保证充足的孵育时间		
	样本稀释倍数太大	选择合适稀释倍数,重新检测		
样本测不出值	样本保存时间过长或者保 存不当	取新鲜样本, 重新检测		
样本测量结果>800 μmol/L	样本浓度太高	选择合适稀释倍数,重新检测		

声明

- 1. 试剂盒仅供研究使用,如将其用于临床诊断或任何其他用途,我公司将 不对因此产生的问题负责,亦不承担任何法律责任。
- 2. 实验前请仔细阅读说明书并调整好仪器,严格按照说明书进行实验。
- 3. 实验中请穿着实验服并戴乳胶手套做好防护工作。
- 试剂盒检测范围不等同于样本中待测物的浓度范围。如果样品中待测物浓度过高或过低,请对样本做适当的稀释或浓缩。
- 5. 若所检样本不在说明书所列样本类型之中,建议先做预实验验证其检测 有效性。
- 6. 最终的实验结果与试剂的有效性、实验者的相关操作以及实验环境等因素密切相关。本公司只对试剂盒本身负责,不对因使用试剂盒所造成的样本消耗负责,使用前请充分考虑样本可能的使用量,预留充足的样本。

附录4 客户发表文献

- 1. Xu W, Li G, Chen Y, et al. A novel antidiuretic hormone governs tumour-induced renal dysfunction[J]. Nature, 2023, 624(7991): 425-432. DOI: 10.1038/s41586-023-06833-8.
- 2. Zhang X, He C, Chen Y, et al. Cyclic reactions-mediated self-supply of H2O2 and O2 for cooperative chemodynamic/starvation cancer therapy[J]. Biomaterials, 2021, 275: 120987. DOI: 10.1016/j.biomaterials.2021.120987.
- 3. Liu M, Liu S, Liu L, et al. Nanoparticle-inhibited neutrophil elastase prevents neutrophil extracellular trap and alleviates rheumatoid arthritis in C57BL/6 mice[J]. Nano Today, 2023, 50: 101880. DOI: 10.1016/j.nantod.2023.101880.
- 4. Yao H, Huang C, Zou J, et al. Extracellular vesicle-packaged lncRNA from cancer-associated fibroblasts promotes immune evasion by downregulating HLA-A in pancreatic cancer[J]. Journal of extracellular vesicles, 2024, 13(7): e12484. DOI: 10.1002/jev2.12484.
- 5. Chen R, Kang Z, Li W, et al. Extracellular vesicle surface display of αPD-L1 and αCD3 antibodies via engineered late domain-based scaffold to activate T-cell anti-tumor immunity[J]. Journal of Extracellular Vesicles, 2024, 13(7): e12490. DOI: 10.1002/jev2.12490.