# Recombinant Human CNN1 protein (His Tag)

Catalog Number: PDEH101066



Note: Centrifuge before opening to ensure complete recovery of vial contents.

| Description |          |
|-------------|----------|
| Species     | Human    |
| Mol Mass    | 32.6 kDa |

Accession P51911

**Bio-activity** Not validated for activity

#### **Properties**

Description

**Purity** > 95% as determined by reducing SDS-PAGE.

**Endotoxin** < 10 EU/mg of the protein as determined by the LAL method

Storage Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80

°C. Reconstituted protein solution can be stored at 4-8°C for 2-7 days. Aliquots of

reconstituted samples are stable at < -20°C for 3 months.

ShippingThis product is provided as lyophilized powder which is shipped with ice packs.FormulationLyophilized from a 0.2 μm filtered solution in PBS with 5% Trehalose and 5%

Mannitol.

**Reconstitution** It is recommended that sterile water be added to the vial to prepare a stock solution of

0.5 mg/mL. Concentration is measured by UV-Vis.

## Data



> 95 % as determined by reducing SDS-PAGE.

## Background

CNN-1 (Calponin 1 [calcium and calmodulin-binding troponin T-like protein], also Calponin basic, CaP and Calponin H1) is a 32-36 kDa cytoplasmic member of the calponin family of proteins. Although reportedly expressed in fibroblasts and endothelial cells, it actually appears to be restricted to smooth muscle and smooth muscle-like cells such as myoepithelium and myofibroblasts in the adult. CNN-1 interacts with F-actin in a phosphorylation-dependent manner. When nonphosphorylated, CNN-1 blocks actomyosin ATPase activity, contributing to the stabilization of actin stress fiber bundles. Thus, CNN-1 expression inhibits cell motility and the formation of podosomes. Human CNN-1 is 297 amino acids (aa) in length. It contains one CH/calponin homology domain (aa 30-127), and three consecutive calponin-like repeats (aa 164-268). The repeats are suggested to mediate actin binding. There are five potential Ser/Thr phosphorylation sites. Full-length human CNN-1 shares 97% aa sequence identity with mouse CNN-1.

#### For Research Use Only