

A Reliable Research Partner in Life Science and Medicine

Recombinant Histone H3 (Symmetric Di Methyl Arg2) Monoclonal Antibody

catalog number: AN302110L

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description

Reactivity Human;Rat;Mouse

Immunogen Recombinant human Symmetric Di-Methyl-Histone H3 (Arg2) fragment

HostRabbitIsotypeIgG, κ CloneA834

Purification Protein A purified

Buffer PBS, 50% glycerol, 0.05% Proclin 300, 0.05% protein protectant.

Applications Recommended Dilution

WB 1:1000-1:2000
ChIP 6 μg/5×10⁶ cells

Data

Western Blot with Histone H3 (Symmetric Di Methyl Arg2) Monoclonal Antibody at dilution of 1:2000. Lane 1: HeLa, Lane 2: MCF-7, Lane 3: C2C12 nuclear, Lane 4: C2C12 cytosol (Negative control), Lane 5: BRL, Lane 6: Rat heart,

Lane 7: Recombinant histone H3 (20 ng)

Observed-MW:15 kDa Calculated-MW:15 kDa

Chromatin immunoprecipitation analysis of HeLa immunoprecipitated DNA by real-time PCR using primers specific for the human RPL30, TuBBP10. The data are presented as enrichment of each sample relative to the total amount of input chromatin at each amplicon.

Preparation & Storage

Storage Storage Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles.

Shipping lce bag

Background

The ε-amino lysine acetylation of proteins is an important reversible modification controlling protein activity. The amino-terminal tails of core histones undergo lysine methylation in multiple sites, termed as "histone code" or "epigenetic code". Lysine methylation in core histones is a major determinant for the formation of active and inactive regions of the genome and therefore plays vital roles in multiple cellular events. In most species, lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing. Methylation in histones modulated by specific histone methyltransferases (HMTs) and histone demethylases (HDMs) is impaired in the pathologies of cancer and other diseases and therefore, enzymes regulating histone lysine methylation have become promising targets for anti-cancer drugs.

For Research Use Only