

Recombinant Hisotne H3 (Mono Methyl Lys27) Monoclonal Antibody

catalog number: AN302118L

Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description

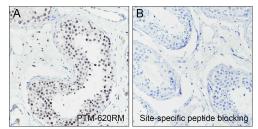
Reactivity Human;Rat;Mouse;Corn

Immunogen Monomethylated human histone H3 (Lys27) peptide

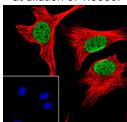
 Host
 Rabbit

 Isotype
 IgG, κ

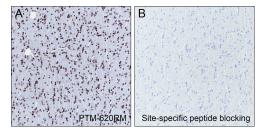
 Clone
 A842


Purification Protein A purified

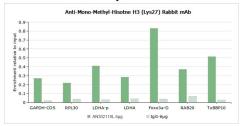
Buffer PBS, 50% glycerol, 0.05% Proclin 300, 0.05% protein protectant.


Applications Recommended Dilution

WB 1:1000-1:2000
IHC 1:1000-1:3000
IF 1:500-1:1000


ChIP 6 μ g/5×10⁶ cells

Immunohistochemistry of paraffin-embedded Human testis using Hisotne H3 (Mono Methyl Lys27) Monoclonal Antibody at dilution of 1:3000.



Immunofluorescent analysis of (100% Ice-cold methanol) fixed HeLa cells using anti-Hisotne H3 (Mono Methyl Lys27) Monoclonal Antibody at dilution of 1:1000.

Immunohistochemistry of paraffin-embedded Mouse cerebrum using Hisotne H3 (Mono Methyl Lys27)

Monoclonal Antibody at dilution of 1:3000.

Chromatin immunoprecipitation analysis of HeLa immunoprecipitated DNA by real-time PCR using primers specific for the human GAPDH-CDS, RPL30, LDHA-P, LDHA-CDS, FOXO3a-D, RAB20 and TuBBP10. The data are presented as enrichment of each sample relative to the total amount of input chromatin at each amplicon.

Rev. V1.0

Preparation & Storage

Storage Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles.

Shipping Ice bag

Background

For Research Use Only

 Toll-free: 1-888-852-8623
 Tel: 1-832-243-6086
 Fax: 1-832-243-6017

 Web: w w w .elabscience.com
 Email: techsupport@elabscience.com

Elabscience®

Elabscience Bionovation Inc.

A Reliable Research Partner in Life Science and Medicine

Histone post-translational modifications (PTMs) are key mechanisms of epigenetics that modulate chromatin structures, termed as "histone code". The PTMs on histone including acetylation, methylation,phosphorylation and novel acylations directly affect the accessibility of chromatin to transcription factors and other epigenetic regulators, altering genome stability, gene transcription, etc. Histone methylation occurs primarily at lysine and arginine residues on the amino terminal of core histones. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids (Lys or Arg) in the histones are methylated and how many methyl groups are attached (mono-, di-, trimethylation on Lys, mono-di-symmetric/asymmetric methylation on Arg). Mostly, lysine methylation occurs primarily on histone H3 Lys4, 9, 27, 36, 79 and H4 Lys20,while Arginine methylation occurs primarily on histone H3 Arg2, 8, 17, 26 and H4 Arg3. histone methyltransferases (HMTs) and histone demethylases (HDMs) are major regulating factors.

For Research Use Only

 Toll-free: 1-888-852-8623
 Tel: 1-832-243-6086
 Fax: 1-832-243-6017

 Web: www.elabscience.com
 Email: techsupport@elabscience.com
 Rev. V1.0