

A Reliable Research Partner in Life Science and Medicine

Recombinant N-Myc Monoclonal Antibody

catalog number: AN302034L

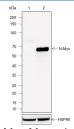
Note: Centrifuge before opening to ensure complete recovery of vial contents.

Description

Reactivity Human;

Immunogen Peptide. This information is proprietary to PTMab.

HostRabbitIsotype IgG, κ CloneA754


Purification Protein A purified

Buffer PBS, 50% glycerol, 0.05% Proclin 300, 0.05% protein protectant.

Applications Recommended Dilution

WB 1:50000

Data

Western Blot with N-Myc Monoclonal Antibody at dilution of 1:1000. Lane 1: HeLa (negative control), Lane 2: IMR-32

Observed-MW:62 kDa Calculated-MW:50 kDa

Preparation & Storage

Storage Storage Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles.

Shipping Ice bag

Background

 Toll-free: 1-888-852-8623
 Tel: 1-832-243-6086
 Fax: 1-832-243-6017

 Web: www.elabscience.com
 Email: techsupport@elabscience.com
 Rev. V1.0

Elabscience®

Elabscience Bionovation Inc.

A Reliable Research Partner in Life Science and Medicine

Members of the Myc/Max/Mad network function as transcriptional regulators with roles in various aspects of cell behavior, including proliferation, differentiation, and apoptosis. These proteins share a common basic-helix-loophelix leucine zipper (bHLH-ZIP) motif required for dimerization and DNA-binding. Max was originally discovered based on its ability to associate with c-Myc and found to be required for the ability of Myc to bind DNA and activate transcription. Subsequently, Max has been viewed as a central component of the transcriptional network, forming homodimers as well as heterodimers with other members of the Myc and Mad families. The association between Max and either Myc or Mad can have opposing effects on transcriptional regulation and cell behavior. The Mad family consists of four related proteins; Mad1, Mad2 (Mxi1), Mad3, and Mad4, and the more distantly related members of the bHLH-ZIP family, Mnt and Mga. Like Myc, the Mad proteins are tightly regulated with short half-lives. In general, Mad family members interfere with Myc-mediated processes, such as proliferation, transformation, and prevention of apoptosis by inhibiting transcription. In humans the Myc family consists of 5 genes: c-Myc, N Myc, L-Myc, R-Myc, and B-Myc. While c-Myc is expressed in many proliferating cells, N-Myc expression is very restricted, with highest levels in during embryonic development and then in the adult during B-cell development. These expression patterns and results from targeted deletion of N-Myc suggest that N-Myc plays an important role in tissue development and differentiation. In addition, amplification or overexpression of N-Myc has been found in human neuroblastomas and is associated with rapid progression and poor prognosis.

For Research Use Only